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1. INTRODUCTION 25 

Although relatively difficult to measure, utilizing body surface area (BSA; cm
2
) in applied 26 

research can prove insightful. For example, sea lice impact (Lepeophtheirus salmonis and 27 

Caligus spp.) is still an active area of scientific research in salmonid culture. A standardized 28 

unit of density is lice g
-1

 and used to assess the physiological health of the host (Wagner et 29 

al. 2003). Density standardized to BSA (lice cm-2) is a more robust metric and better 30 

reflects parasitized space (Abé et al., 2015; Caltran and Silan, 1996; Halliday et al., 2014; 31 

Tucker et al., 2002). BSA can also be a proxy of host density in model simulations, as 32 

Rogers et al. (2013) had done with farmed Atlantic salmon (Salmo salar). 33 

 A paucity of literature on BSA of major aquaculture species is evident after a 34 

thorough review. Few relevant publications actually describe mathematical models 35 

capable of estimating individual BSA. Articles describe BSA models of carp species 36 

(Ling et al., 2008), but most concentrate on Atlantic salmon. Reported methodologies in 37 

model development for BSA of Atlantic salmon raised skepticism. For example, Tucker 38 

et al. 2002 assume linearity between allometric estimators (Osse and van den Boogaart, 39 

1995) and O’Shea et al. (2006) informs their model with as few as 8 samples. In 40 

response, the authors offer an updated mathematical BSA model derived from a year 1 41 

juvenile Atlantic salmon population. 42 

2. MATERIALS AND METHODS 43 

2.1 Fish source 44 

Hatchery-reared Atlantic salmon Salmo salar L., originated from the ARS-USDA 45 

National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, Maine. 46 

Monthly subsamples from a single-year class cohort were collected from June 2013-May 47 



2014. An administered dose of MS-222 (200 mg L
-1

) was used to euthanize fish. 48 

Euthanasia practices were in accordance to and approved by The University of Maine's 49 

Institutional Animal Care and Use Committee (IACUC).  50 

2.2 Measurement protocol 51 

A total of 960 Atlantic salmon were measured for BSA (length: 128 - 477 mm, mass: 52 

21.83-1115.84 g). Fork length (mm) and mass (g) were measured using scale and ruler 53 

and condition factor (K) was calculated with Fulton's equation (Froese, 2006) 54 

K= 100 (W/L3)  55 

 Where W= whole body mass (g) and L = fork length (cm). Total BSA was 56 

measured by methods described in O'Shea et al. (2006). Tracings were scanned into a 57 

computer and ImageJ (NIH, public domain) measured BSA; fins were doubled to account 58 

for the total fin surface area.  59 

2.3 Model development  60 

The construction of a linear model used fork length (mm), mass (g), and condition factor 61 

(K) as predictors of BSA. A total of 844 juveniles were used in model construction with 62 

the R program (RStudio Team, 2015). The method of backwards-stepwise regression was 63 

applied to construct and analyze linear models. A residual QQ-Plot was compared against 64 

simulated normal, logarithmic, and lepto- and platy- kurtic residual plots. A Shapiro-65 

Wilks statistical analysis was also employed to determine normality.  66 

 Non-linear models were constructed using MatLab software (The Mathworks, 67 

2015). Least squares regression was replaced with Tukey bisquare weights in model 68 

construction.  Tukey’s bisquare is a method of robust least squares that minimizes the 69 



influence of extreme values. Points further from the line than would be expected by 70 

random chance have zero weight (Huggins, 1993).  71 

  The coefficient of determination (R2) and the square root of the variance of 72 

residuals (RMSE) identified the best-fit model. Measurements of 116 individuals with 73 

known BSA validated the best-fit model. A two-tailed paired-t-test of estimated and true 74 

BSA values determined if means were statistically similar. 75 

2.4 A comparison of previously published models 76 

  Individuals used in validating the new model were also compared to estimations from 77 

four published models. The mathematical models previously published were:  78 

1. BSA = 9.5864W
0.629

 (Jaworski and Wolm, 1992) 79 

2. BSA = 86.144 + 0.613W   (Tucker et al., 2002) 80 

3. BSA = 12.045W
0.613 

(Glover et al., 2004)  81 

4. BSA = 14.93
0.59

(O’Shea et al., 2006) 82 

 A repeated measures ANOVA comparing estimated and true BSA values 83 

determined if means were statistically similar. Tukey's HSD Post hoc analysis determined 84 

which pair-wise means differed.  85 

3. Results 86 

3.1 Model development  87 

Morphometric data were not normally distributed (Shapiro-Wilks; p-value = 0.00) and 88 

matched best with leptokurtic data simulations. However, the large sample size is 89 

sufficiently robust to approximate normality under the central limit theorem. Parameter 90 

estimates of BSA regressed against mass, length, and condition factors are in Table 1. 91 

The best regression model for BSA based on highest R
2 

was BSA=13.9W
0.61

 (R
2
 = 0.97, 92 



RMSE = 21.5). BSA estimations from 13.9W
0.61

 were statistically equal to corresponding 93 

true BSAs of sampled fish (N = 116; α = 0.05, p = 0.97).  94 

3.2 A comparison of previously published models  95 

The repeated measures ANOVA showed that at least two pairs of means were 96 

significantly different (p <0.001). Figure 2 is a summary of TukeyHSD results with 95% 97 

confidence intervals. In brief summary: Post hoc analysis revealed that means between 98 

true BSA and estimations from the developed model, 13.9W
0.61

, were equal. Estimations 99 

from 13.9W
0.61

 have a similar distribution as those generated by the O’Shea et al. (2006) 100 

model (p =0.97) and both have means equal to the true BSA (p = 0.99). Estimated values 101 

from the model described in (Glover et al., 2004) are also equal to true BSA (p = 0.12). 102 

All other comparisons were significantly different (p < 0.001). Figure 1 demonstrates 103 

how well the new model fits the dataset compared to previous models. A box-plot of true 104 

and estimated BSAs also shows that the 1992 and 2002 models could underestimate true 105 

BSA; the 2004 model is only slightly less matched than the 2006 and presented model 106 

(Figure 3). 107 

4. Discussion 108 

The mass-power function as an estimator of BSA best fit the data set for juvenile Atlantic 109 

salmon. A power function of body mass was also suggested as a proxy for BSA in other 110 

fishes (Ling et al., 2008; Niimi, 1975), amphibians (Chen et al., 2014), and birds (Perez et 111 

al., 2014; Silva et al., 2009). Estimated values produced by the O’Shea et al. (2006) and 112 

current models were found to be equal to true BSA (p = 0.99). Those values obtained 113 

from the Hamre et al. model, cited by Glover et al. (2004), were also equal to true BSA, 114 

but the probability that the null is true is much weaker (p = 0.12). It is with confidence 115 



that the new model is best at capturing true BSA of Atlantic salmon with known body 116 

mass (g) than previous models.  117 

The exception is that outputs from BSA=13.9W
0.61 

and O'Shea et al. (2006) are 118 

equal to one another (p=0.97). A total of 8 fish ranging in mass between 18.8-539 g 119 

designed the O'Shea et al. (2006) BSA formula. The strength of the model 120 

BSA=13.9W
0.61

 is the extraordinary sample size used for model development (N=844) 121 

and validation (N=119). The range of juvenile fish used in for the latest model was also 122 

extensive (length: 128-477 mm, mass: 21.8-1,115.8 g) compared to O'Shea et al. (2006)'s 123 

fish (length: 131-188 mm, mass: 18.8-539 g). Although the O'Shea model does 124 

remarkably well, use of previous models poses the risk of BSA underestimation (Figure 125 

3).  126 

  An interesting trend emerges when regressions, including BSA=13.9W
0.61

, are 127 

plotted on a scatter chart of true BSA (cm2) and fish mass (g). In Figure 1, model fit 128 

seems to improve with each year of publication. The exception is Tucker et al. (2002) 129 

because their model assumes a linear relationship between parameters that are allometric 130 

in nature (Osse and van den Boogaart, 1995). The authors speculate that methods in BSA 131 

measurement could improve the fit of a mathematical model. Rapid progression in 132 

aquaculture may also weaken the fit of an older model when applied to current salmon 133 

stocks 134 

Domestication has changed the biology of the farmed fish in the last 30 years. In 135 

New Brunswick and Maine, Atlantic salmon are heavier and more robust today than in 136 

the 1980's (Chang and Page, 2014). Body weight has a high heritability trait (Tsai et al., 137 

2015) that correlates with appetite, energy allocation, and feed conversion ratios (Neely 138 



et al., 2008; Thodesen et al., 1999). As a result, domesticated salmon grow larger and 139 

faster than wild types (Harvey et al., 2016) and continue to improve over generations of 140 

breeding (Gjedrem, 2000). Improvements in diet composition and quality further enhance 141 

weight gain in Atlantic salmon (Oliva-Teles, 2012). Weight gain correlates positively 142 

with condition factor and is greater in farmed fish (Acharya, 2011; Glover et al., 2009). 143 

Since condition factor is a parameter descriptive of girth it is also indicative of BSA.  144 

   Mariculture continues to evolve with rapid advancements in breeding and culture 145 

techniques. Breeding programs continue targeting genes that affect salmon growth. 146 

Amendments to mathematical models should occur on occasion to avoid outdatedness.  It 147 

is with confidence that the model presented can estimate BSA of farmed Atlantic salmon 148 

juveniles with improved accuracy. The authors hope that it will prove useful among the 149 

applied sciences.  150 
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Figure 1: True body surface area (cm
2
) of 116 juvenile Atlantic salmon plotted against their 

corresponding mass (g). Regression lines from previously published models are plotted against data 

points, including the current model: BSA=13.9W
0.61

, whose R
2
 value is 0.97 (thick black line). 
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Figure 2: Test statistics of TukeyHSD for 116 individual juvenile Atlantic 

salmon. Each line represents the 95% confidence interval on the differences 

between means of the Jaworksi and Holm 1992, Tucker et al. 2002, Glover et 

al. 2004, O’Shea et al. 2006, the presented model, and true BSA. A 

comparison without “0” in the confidence interval is indicative of significant 

differences. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Surface area estimation comparison of the 

Jaworski and Holm 1992, Tucker et al. 2002, Glover et al. 

2004, O’Shea et al. 2006, and Frederick et al. 2016 

mathematical models to the true surface area of 116 

juvenile Atlantic salmon. Median values of the 2016, 

2006, and 2004 models are matched closely to the median 

values of the true surface area. The 2004, 2006, and 2016 

model was statistically similar to the true surface area in a 

post hoc analysis (p=0.12, 0.99, 0.99, respectively).  



 

 

 

 

 

 

    Coefficient confidence intervals 

Model Formulae R
2 

RMSE a b 

Exponential 

SA = 328.3e0.0K 0.31 112.2 (320.7, 335.8) (-0.02, 0.02) 

SA = 325.7e0.35L 0.94 31.42 (323.4, 328.0) (0.35, 0.36) 

SA = 341.9e
0.37W 

0.90 39.19 (339.3, 344.6) (0.36, 0.37) 

Power 

SA = 329.3K0.03 .31 112.4 (321.2 337.4) (-0.10, 0.15) 

SA = 0.59L1.93 0.94 31.36 (0.52, 0.65) (1.90, 2.00) 

SA = 13.9W0.61 0.97 21.54 (13.4, 14.4) (0.60, 0.61) 

Linear SA = 132.3 + 1.08W 0.95 29.88 (128.7, 136.0) (1.06, 1.09) 

Table 1: Formulae estimating total surface area as a function of mass (g), fork length (mm), and condition factor (K) for 

juvenile Atlantic salmon. Data collected from 844 individuals were used to construct the mathematical models. The power 

model SA = 13.9W
0.61 

is the best fit for the sample’s data (R
2
 =0.97) and was also statistically similar to true surface area 

values, as determined by a two-tailed paired t-test (N= 119; p=0.97). 


